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Abstract

We assess the market risk of the 0VIX lending protocol using a multi-asset agent-
based model to simulate ensembles of users subject to price-driven liquidation risk.
Our multi-asset methodology shows that the protocol’s systemic risk is small under
stress and that enough collateral is always present to underwrite active loans. Our
simulations use a wide variety of historical data to model market volatility and run the
agent-based simulation to show that even if all the assets like ETH, BTC and MATIC
increase their hourly volatility by more than ten times, the protocol carries less than
0.1% default risk given suggested protocol parameter values for liquidation loan-to-
value ratio and liquidation incentives.

1 Introduction

DeFi lending protocols have seen a significant flow of capital. The lending system’s stabil-
ity will depend on the collateral value that the borrowers provide. At any point in time, the
system must have adequate capital to become solvent. Recently 1, research has attempted
to estimate the financial risk of lending protocols associated with asset price fluctuations
using Agent-based simulations. However, examples assume only two assets (one being the
numeraire) are supplied and borrowed in the individual lending market. In reality, users
can supply multiple assets to the lending market and borrow multiple assets. Sometimes
the same asset is both borrowed and lent to capitalise on temporary incentive mechanisms
aimed at attracting liquidity into the lending market. This paper presents an enhanced
multi-asset model where real-time liquidation calls are executed as a result of price tur-
bulence and borrowers face periods where they need to raise cash to remain within the
tolerance limit of the protocol parameters like collateral ratio. As a case study, we model
these dynamics on the 0VIX2 lending protocol.

We show how one can ensure the lending market’s resilience to adverse shocks even
when multiple assets become highly volatile simultaneously. This is done by exploring
portions of the phase space of 0VIX’s asset-specific parameters and optimising them by
requiring that over-collateralisation is retained across a wide range of simulated price
volatilities while minimising the liquidation penalties to individual users. Analyses such
as that the one presented here can be performed periodically on a running basis to offer
individual users key insights into the risk of their portfolio positions, as well as propose
re-calibrations of protocol parameters for discerning governance participants. We believe

1Kao, Chitra, Chiang, and Morrow (2020)
20VIX is the decentralized, Polygon blockchain-based open-source lending and borrowing protocol en-

hanced with veTokenomics, interest rate optimization curve beta , and DAO Treasury management.
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this offers investors the confidence to participate with significant capital in 0VIX lending
pools.

Our model is motivated by the fact that a multi-asset portfolio can withstand the risks
associated with lending protocols. The shock in the price of a single asset can amplify
the risk in another pool. The trajectory taken by multi-asset liquidations under amplified
market conditions can vary over time and depends on several factors. These must all be
factored into the incentives that motivate independent and profit-driven liquidators.

We assess the effect of the following factors 1) Available buy- and sell-side market liq-
uidity across all asset pairs 2) Asset-specific liquidation incentives and maximal liquida-
tion size offered to liquidators across all assets, and 3) Maximally allowed loan-to-value
ratios for borrowing against specific assets deposited as collateral beyond which liqui-
dations are permitted. These factors in our model contribute to the liquidation size, the
collateral-loan assets chosen to be liquidated, and whether a liquidation call will be made
at all.

Our model considers agents (or users) with multi-asset portfolio allocations. The users
are always constrained by the individual collateral ratio of the protocol-defined Loan-to-
value (LTV) ratios. The OVIX protocol stability is governed by the fact that all liabilities
are redeemable. To maintain this balance, we model liquidation as an incentive mech-
anism where a liquidator is given an incentive to perform the foreclosure (Chatterjee &
Eyigungor, 2015) like an event. Whether it is profitable for the liquidator to perform the
action is a critical feature in the stability of the system. The liquidators’ profit is dependent
on the traction cost of trading the bad debt in the market and the slippage cost associated
with it. When the liquidator acts on the arbitrage opportunity in the bad state, the protocol
benefits, decreasing the risk exposure. We stress the liquidation incentive to test the risk
exposure of the protocol. The increase in liquidation incentive can reduce the systematic
risk but can also disincentivise the borrowers as they see this as the potential penalty to
their net borrowing cost. Therefore, protocols must optimally decide the incentive, keep-
ing in mind the growth potential of the lending pools (Leshner & Hayes, 2019).

We assume that the strategic interaction between the liquidators are not present, and
they are risk-averse (Schied & Schöneborn, 2009). This assumption represents the observed
behaviour of liquidators where they immediately sell the debt in the market, assuming the
risk of waiting is high enough to gain from any future price movements.

We model the slippage cost to provide real-life market conditions across crypto as-
sets (Makarov & Schoar, 2020). Market impact models have been extensively studied in
which liquidity and volatility are critical drivers of the execution cost (Tóth et al., 2011).
Since we model the multi-asset model and include relatively lower liquidity assets like
MATIC, the slippage costs becomes vital for the market participants. We assume the func-
tional form of the slippage model and use it to calibrate our simulations. In the future, we
aim to use the recent order book depth data across Centralized exchanges and liquidity
across—decentralized exchanges (Lehar & Parlour, 2021) to model slippage more realisti-
cally.
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Our market risk assessment of OVIX relies on an agent-based simulation that stresses
the lending protocol based on highly volatile price trajectories. Financial institutions, in-
cluding banks and federal reserves, have been using such techniques to ascertain the econ-
omy’s financial stability Ramadiah, Galbiati, and Soramäki (2021). The OVIX protocol
will be on Polygon with significantly lower transaction costs, reducing the risk of liquida-
tions and transactions failing due to costs. Past research has shown this bottleneck in the
Ethereum Simulated EVM environment 3

Our results show that the liquidation mechanism works, and the system remains stable
even in the worst price history of MATIC, when it dropped 14% in a single day (see Figs. 1
and 3). Stressing the volatility of the assets has shown that the system remains within the
safe LTV zone and can be scaled from a simulated $100 million to ten times without any
significant rise in the solvency of OVIX (the percentage of undercollateralized users stays
well below %). We also show that current protocols parameters are sufficient to face any
unprecedented fall in asset prices. We test the OVIX stability across wide ranges of market
volatility conditions and multiple collateral factors. We also test the robustness of liqui-
dation incentives in the protocol and how the current incentives are sufficient to maintain
the liquidity profiles in the pools where borrowers are optionally liquidated if they cross
the protocol’s LTV thresholds. In particular, we verify a theoretical scaling between liqui-
dation incentives and LTV ratios above which users become likely trapped into runaway
LTV factors when subject to liquidations (see Fig. 4). This must be avoided at all costs as it
may ultimately lead to undercollateralized protocols.

3Polygon is the leading platform for Ethereum scaling and infrastructure development. Its growing suite
of products offers developers easy access to all major scaling and infrastructure solutions: L2 solutions (ZK
Rollups and Optimistic Rollups), sidechains, hybrid solutions, stand-alone and enterprise chains, data avail-
ability solutions, and more. Polygon’s scaling solutions have seen widespread adoption with 3000+ applica-
tions hosted, 1B+ total transactions processed, 100M+ unique user addresses, and $5B+ in assets secured.
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Figure 1: Simulated dual-asset MATICUSDC portfolio behavior across 1000 long-only pro-
tocol users during the worst price drawdown day of MATICUSD history. A bar plot of
liquidation events overlays the price trajectory.

We also use Covid-pandemic time asset prices data to estimate and stress the OVIX
protocol to find the likelihood of failure. The widespread economic damage caused by the
COVID-19 pandemic provides a major test of the real recent stresses on crypto assets and
the financial system. Our study uses the COVID data to run a market risk assessment on
capital and liquidity requirements (see Fig. 6). These are then compared with similar re-
sults obtained by simulating 10, 000 distinct price trajectories across 100 different protocol
portfolios to obtain the average expectation for stress on the protocol (see Fig. 7).

The remainder of this study is organized as follows. Section 2 elaborates the model of
the market risk framework and protocol dynamics. Section 3 presents the data and agent-
based simulation framework. Section 4 contains the results, and Section 5 concludes.

2 Model

2.1 Assets and Users

We consider a set of users NU participating on the platform, and NA assets which users
can deposit as collateral or borrow against other assets they have already deposited as
collateral. At any given moment in time, each user k is fully determined by the collateral
cki and loan lki amounts (in numeraire units) of each asset i they own. The total portfolio
size and loan-to-value ratio (LTV) of their account can be derived as:
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portfoliok(t) =

NA∑
i=0

(
cki − lki

)
(1)

LTVk(t) =

∑NA
i=0 l

k
i∑NA

i=0 c
k
i

,

where we omit the temporal dependence (t) from the rhs for ease of legibility.
Each asset i on the protocol is defined by its maximal LTV maxLTV

i beyond which the
asset cannot collateralize anymore loans, a liquidation LTV liqLTV

i beyond which any loans
using the asset as collateral become liable for liquidation, and a closing factor closei < 1

denoting the maximal fraction of a loan portfolio consisting of that asset which can be liq-
uidated. Given these protocol parameters

{
maxLTV

i , liqLTV
i , closei < 1

}
, and a user’s port-

folio allocation {cki , lki }, one may derive each user’s maximal and liquidation LTV:

LTVmax
k (t) =

∑NA
i=0 cki maxLTV

i

portfoliok

(2)

LTVliq
k (t) =

∑NA
i=0 cki liqLTV

i

portfoliok

.

Whenever a user’s LTVk > LTVmax
k they may not borrow any more capital, and when

LTVk > LTVliq
k a user becomes liquidatable.

Given a price trajectory for the model’s assets, all the user portfolios and LTV values
can be updated at each price tick by modifying the value of all the assets in their portfolio.
This defines all further available actions on the protocol until the next price update.

2.2 Liquidators

Whenever a user’s LTVk > LTVliq
k , a liquidator may attempt to liquidate an amount

pi < closei · lki = lki /2 across one of any of the user’s loan assets4. Execution is per-
formed by utilizing any single collateral asset ckj to cover the amount5. To incentivize the
active monitoring and liquidation calls performed by liquidators, the protocol assigns a
percentage liquidation incentive incj to each asset j used as collateral to incentivize the
liquidation of certain assets before others. Based on this, a liquidator will consider their
potential gains minus any swap fees defined by the sum of three factors: transaction fees,
trading fees, and slippage fees. Whereas the first two can in principle be absorbed inside
the liquidation incentive factor by making it time-dependent incj → incj(t), we will drop
them for notational simplicity by assuming them constant6.

4Where we set closei = 1/2 across all assets for simplicity
5In some cases, a user may have collateral deposited across a number of assets but loans concentrated in

one asset only such that no single collateral asset can cover the maximal liquidatable amount lki /2
6Our multi-asset model simulator allows full time-dependent control of all such factors if desired.
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2.2.1 Slippage Costs

The slippage fees are very relevant as they depend on the amount akj of a user’s collateral
asset j being swapped to repay a liquidator’s chosen lki /2 relative to the available sell-side
liquidity Vj→i in the (j, i) asset pair and the normalized distribution ρj,i(ϵ) of such liquidity
(as a function of deviation ϵ from quoted market price) across all accessible markets. The
percent slippage fee σj,i(a

k
j ) is then defined by the following equations:

akj
Vj→i

=

∫ ∆P(akj /Vj→i)

0
dϵ ρj,i(ϵ) (3)

σj,i(a
k
j ) =

Vj→i

akj

∫ ∆P(akj /Vj→i)

0
dϵ ϵρj,i(ϵ), (4)

where the first equation self-consistently defines the total price slippage ∆P
(
akj /Vj→i

)
to

swap akj , and the second defines the percent loss due to slippage for this amount.
Whereas this quantity can be compiled from real-world data and used in our multi-

asset model, it can be also effectively modelled for simulation purposes using γ-polynomial
approximations depending on a slippage factor sγ (to be fit alongside γ) from historical
data:

σj,i(a
k
j ) ≈ sγ ·

(
akj

Vj→i

)γ

(5)

From this one can succinctly write the total profit a liquidator can make for swapping
an amount akj for a liquidated user’s loan asset i as:

liquidatorProfitj,i(a
k
j ) =

(
incj − σj,i(a

k
j )
)
akj , (6)

and the total amount pi of loan paid upon completing the swap:

pki (a
k
j ) =

[
1−

(
incj + σj,i(a

k
j )
)]

akj . (7)

2.2.2 Liquidation Logic

Recently, it has been argued that real-world slippage behavior is suitably modelled in (5)
by setting γ = 1 (Kao et al., 2020). Under such an approximation, akj can be explicitly
solved as a function of pki giving:

akj (p
k
i ) = δi,jp

k
i + (1− δi,j)

1− incj
2 s̃j,i

[
1−

√
1−

4 s̃j,i pki
(1− incj)2

]
(8)

where δi,j is the Kronecker delta, and s̃j,i ≡ s0/Vj→i represent an array of asset parameters7

in the multi-asset model. When j ̸= i, the swappable amount is well-defined as long as the

7Potentially time-dependent also.
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amount chosen to repay satisfies:

pki <
(1− incj)

2

4 s̃j,i
. (9)

In principle, if this inequality is violated, the total swap fees are effectively so large that
no amount akj can swap for pki . In practice however, an optimal swap amount ākj above
which the liquidator profits decrease with increasing akj . This sets a maximal swap/pay
amount constraint from the liquidator’s perspective which can be found by solving for the
maximum of (6):

ākj =
incj
2 s̃j,i

(10)

p̄ki = pki (ā
k
j ).

Combining (8), and (10), with the protocol imposed pki < lki /2, the liquidator’s opti-
mization strategy can be summarized as the following constrained minimization problem
across all asset pairs (i, j) for every liquidatable user:

max
i,j

liquidatorProfitj,i(a
k
j )

akj < min
[
ākj , c

k
j , a

k
j (l

k
i /2)

] (11)

2.3 Hard Parametric Constraints

The model just described presents large amounts of complexity resulting from the many
free parameters that can be included. Their interactions and effects are generally non-
trivial and only analyzable through extensive simulation efforts. However, some gen-
eral hard constraints can be placed on two parameters in the system: the liquidation LTV
LTVliq

k , and the net fees incj + σj,i(a
k
j ) paid.

As discussed, when a user’s LTV crosses their liquidation threshold LTVk > LTVliq
k ,

liquidators become incentivized to liquidate a portion of their positions to sanitize their
LTV health. This however requires that the LTV of the user will invariably decrease as a
result of liquidations:

LTVk(t+ 1) =

(∑NA
i=0 l

k
i

)
− pki (a

k
j )(∑NA

i=0 c
k
i

)
− ajk

< LTVk(t) (12)

More technically, given that this must be true for any amount ajk being liquidated, a
healthy protocol must always demand that:

∂aLTV = ∂a

(∑NA
i=0 l

k
i

)
−
[
1−

(
incj + σj,i(a

k
j )
)]

akj(∑NA
i=0 c

k
i

)
− ajk

< 0. (13)
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To qualitatively characterize the importance of this constraint, let us perform the deriva-
tive in (13) under the assumption that all liquidation fees are constant and independent of
akj , one has:

∂aLTV = ∂a
L− (1− x)a

C − a

=
−(1− x)(C − a) + L− (1− x)a

(C − a)2

=
L− (1− x)C

(C − a)2
< 0

=⇒ L

C
= LTV < 1− x, (14)

where all indices have been dropped for ease of legibility ajk → a, the sum of collat-
eral/loan assets have been compressed to C/L respectively, and all liquidation fees have
been grouped into the term x.

We find that a universal relationship exists between the maximal LTV reached on the
protocol and the average liquidation cost which, if violated leads to the systemic creation
of undercollateralized users. Equation (14) is a direct prediction of our model whose veri-
fication can be seen in Fig. 4 where deviations from trend at lower liquidation LTV values
is due to the hard minimum initial LTV we allow users to have. This approach then allows
us to set arbitrary bounds for the level of undercollateralization risk the protocol is willing
to assume, and choose protocol parameters to avoid such risk. In Fig. 5, we plot the risk
frontier for generating undercollateralized users with > 0.1% probability. This sets hard
constraints for the kind of parameter values the protocol should choose (yellow shaded
area in figure).

3 Data and Simulations

3.1 User Initialization

Agents in our model are considered passive. Their portfolio is randomly allocated at the
beginning of the simulation and assumed to not be adjusted throughout the course o the
simulation. To begin the initialization process, collateral and loan asset values {cki , lki }

NA
i=0

are randomly assigned. For the results presented in this paper, we choose to neglect port-
folios where users borrow and collateralize identical assets. To impose this, we unwind
portfolio allocations after having generated them.

To begin a simulation, each user is assigned a portfolio size portfoliok(0) and LTV value
LTVk(0). These are drawn randomly from lognormal distributions targeting mean portfo-
lio values of $5000 and mean LTV values of 0.6 (with a hard minimum LTV value of 0.45).

The initial portfolio asset values can then be individually rescaled {cki , lki }
NA
i=0 → {rkC ·

cki , r
k
L · lki }

NA
i=0 such that they respect

(
portfoliok(0),LTVk(0)

)
assigned. The rescaling factors

are given by:
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rkC =
portfoliok(0)

(1− LTVk(0))
∑NA

i=0 c
k
i

(15)

rkL = rkC · LTVk(0) ·
∑NA

i=0 c
k
i∑NA

i=0 l
k
i

. (16)

A typical initial portfolio ensemble is shown in the left figure of Fig.8

3.2 Price Trajectories

To run our model, we have collected the past three years of price data across Bitcoin,
Ethereum, MATIC, and USDC with minute tick level resolution. This allows us to both
simulate our model under actual past price dynamics, and generate new cross-asset price
dynamics by randomly selecting portions of the historical data. Since our agents are not al-
lowed to modify their portfolio allocations, simulations are run with only one day’s worth
of price data. Simulating beyond this timescale is possible by unrealistic. To simulate spe-
cific price volatility, each randomly filtered price data sequence is individually rescaled to
match the desired hourly target volatility before commencing the simulation run.

Figure 2: Example ensemble of generated price trajectories for the ETH asset. Shaded
areas represent bounds of 100 generated trajectories of which only 10 are plotted for visual
convenience.

3.3 Data

To collect statistically significant data, 1000 simulation runs are performed for each set of
desired protocol parameters. Each simulation run tracks the evolution of 1000 user portfo-
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lios across Bitcoin, Ethereum, MATIC, and USDC regenerating their individual allocation
at each run so that the results are not biased to specific portfolio ensembles. Throughout
the simulations we assume that the total available sell-side market volume for swaps is
$100M for all X-MATIC pairs (where ’X’ stands for BTC, ETH, and USDC), and $1000M
for the rest.

4 Results

Figure 3: Simulated MATICUSDC dual-asset portfolio behavior across 1000 protocol users
subject to 1000 randomly generated daily price trajectories with varying degree of hourly
volatility (see Section 3.2 for details). The shaded regions correspond to 95% confidence
bands. Left figure: Users’ collective portfolio loan-to-value ratios over time. Middle figure:
Total liquidated funds over time. Right figure: Users’ collective outstanding debt as a per-
centage of their initial allocation.
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Figure 4: Undercollateralization frontier: Scatter plot of pair values (liquidation LTV, liqui-
dation incentive) at which the number of undercollateralized users on the protocol exceeds
> 1%. For each such pair, 1000 MATICUSD user portfolios were simulated 100 times each
to collect sufficient statistics. The solid purple line represents the theoretical prediction
based on our model discussed in the lead-up to equation (14). Deviations from theoretical
trend at lower liquidation LTV values are due to finite lower bounds on the initial LTV of
simualted users.
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Figure 5: Scatter plot of pair values (liquidation LTV, liquidation incentive) at which the
number of undercollateralized users on the protocol exceeds > 0.1%. Unlike Fig. 4 here we
show results for MATICUSD, ETHUSD, and BTCUSD simulated portfolios. Color shad-
ing is proportional to final average protocol LTV (darker colors = higher final LTV values).
Simulations are performed on ensembles of 2000 users with 200 price trajectories for each
(liquidation LTV, liquidation incentive) pair values to collect sufficient statistics. Solid pur-
ple line represents the theoretical undercollateralization frontier for reference (14). Yellow
shaded area represents where optimal protocol parameters should lie.
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Figure 6: Simulated portfolio behavior across 1000 protocol users throughout the ‘COVID
Crash’ day (20 Feb. 2020). User portfolios are initialized by randomly assigning collat-
eral/loan position values (ETH, BTC, MATIC, and USDC assets were considered) consis-
tent with a target loan-to-value ratio and portfolio size drawn from log-normal distribu-
tions for each of them (see Section 3.1). 100 such simulations are then repeated (with a
different initialization each time) to collect average statistics. All figures are plotted versus
time in minutes. Top figure: Liquidation events vs price drawdowns. Middle figure: Dual
axis plot of users’ collective outstanding debt and total liquidated funds (shaded areas
represent 95% confidence intervals). Bottom figure: Total liquidator profits, trading, and
slippage fees.
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Figure 7: Simulated multi-asset portfolio behavior across 1000 protocol users. Statistics
were gathered by simulating 100 distinct initial portfolio allocations across 100 different
price trajectories (10, 000 distinct price trajectories in total). User portfolios are initialized
by randomly assigning collateral/loan position values (ETH, BTC, MATIC, and USDC as-
sets were considered) consistent with a target loan-to-value ratio and portfolio size drawn
from log-normal distributions for each of them (see Section 3.1). 100 such simulations are
then repeated (with a different initialization each time) to collect average statistics. All
figures are plotted versus time in minutes. Results shown represent the average expected
behavior of protocol health across any random day given the initial portfolio sized and
preferred LTVs of its users. Top figure: Liquidation events vs price drawdowns. Middle fig-
ure: Dual axis plot of users’ collective outstanding debt and total liquidated funds (shaded
areas represent 95% confidence intervals). Bottom figure: Total liquidator profits, trading,
and slippage fees.

14



Figure 8: Initial (left figure) and final (right figure) user portfolio distributions corresponding
to a single MATICUSD volatility simulation (40% volatility results are shown). Users are
collectively characterized according to their loan-to-value ratios and portfolio size.

5 Discussion and Conclusions

We have built an agent-based, multi-asset simulator for lending markets which allows for
extensive testing and aggregation of portfolio statistics across varying stressors and proto-
col parameters. We have demonstrated its principal characteristics by simulating portfolio
behaviors subject to volatile real-world data such as the COVID market crash of 20 Febru-
ary 2020, as well as artificially generated high-volatility price scenarios. In principle, such
a framework allows for a detailed protocol parameter exploration under various circum-
stances, allowing for their optimization. What our model does not include is the dynamical
re-allocation of user portfolios during market unwinding events. We have argued for their
neglect by remarking that our simulations are valid only in a limit of passive user behav-
ior. As such, we have refrained from running our models for longer than a daily (1440
minute) timescale. In the future we plan to add intra-day user interactions characterized
by an intrinsic user-specific timescale describing the frequency with which they may rebal-
ance their portfolios. Similarly to the loan-to-value ratio and portfolio sizes, this too can be
drawn from a suitable distribution. Overall, we believe our framework is ideally suited for
decentralized lending markets such as the soon-to-be-launched 0VIX, due to the potential
for generating data-driven protocol upgrade proposals that governance token holders can
evaluate and vote on.
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Tóth, B., Lemperiere, Y., Deremble, C., De Lataillade, J., Kockelkoren, J., & Bouchaud, J.-

P. (2011). Anomalous price impact and the critical nature of liquidity in financial
markets. Physical Review X, 1(2), 021006.

16


	Introduction
	Model
	Assets and Users
	Liquidators
	Slippage Costs
	Liquidation Logic

	Hard Parametric Constraints

	Data and Simulations
	User Initialization
	Price Trajectories
	Data

	Results
	Discussion and Conclusions

